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Abstract—The Internet has transformed significantly in 

recent years, giving rise to innovative applications focused on 

digital content consumption. Advanced frameworks that 

integrate Content Delivery Networks (CDNs) and Artificial 

Intelligence (AI) have emerged to optimize content delivery and 

enhance user experiences. These frameworks use deep learning 

models to improve traffic prediction, bandwidth management, 

and network optimization for video streaming. The proposed 

system preprocesses video data and analyzes traffic patterns 

during peak hours, identifying underutilized channels and 

redirecting traffic to less congested routes. This ensures faster 

content delivery, reduces latency, and prevents bottlenecks 

during high-demand periods. A Hybrid CNN–LSTM deep 

learning model is designed to enhance traffic prediction for 

video streaming over CDNs. By combining the spatial learning 

capabilities of Convolutional Neural Networks (CNNs) with the 

temporal modeling strength of Long Short-Term Memory 

(LSTM) networks, the architecture captures complex 

spatiotemporal traffic patterns. The model accurately classifies 

network states, such as depletion, filling, and stalling, achieving 

a classification accuracy of 99.99%. Its strong generalization 

ability and low latency make it a scalable and intelligent 

solution for optimizing video content delivery and improving 

user experience in dynamic network conditions. 

Keywords—Content Delivery Networks (CDNs), Deep 

Learning (DL), Video Streaming Traffic Prediction, Quality of 
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I. INTRODUCTION  

Nowadays, Content Delivery Networks (CDNs) and 
Artificial Intelligence (AI) are essential for managing 
growing data traffic demands. The integration of CDNs with 
deep learning significantly enhances user experience, 
especially for latency-sensitive applications like video 
streaming and gaming, by optimizing data routing and 
reducing latency. Deep learning improves content caching, 
load balancing, and traffic distribution, preventing 
bottlenecks by directing requests to the nearest available 
resources. 

The Video-on-Demand market is projected to reach USD 
212.18 billion by 2030, with digital video accounting for 
approximately 82% of internet traffic due to the shift towards 
on-demand viewing [1]. Platforms are adopting hybrid 
revenue models while investing in localized content to boost 
engagement. 

CDNs rely on caching and intelligent data distribution, 
making them scalable to meet evolving performance 
demands. However, video delivery networks face challenges 
such as latency, bandwidth consumption, and high resource 
demands. Deep learning enhances CDN efficiency by 

predicting traffic patterns, optimizing resource allocation, 
and improving Quality of Experience (QoE). With the rapid 
expansion of internet usage and streaming services, deep 
learning-driven CDNs will play a crucial role in ensuring 
seamless, high-quality content delivery. Dynamic Adaptive 
Streaming over HTTP (DASH) has emerged as the premier 
method for its flexibility and efficiency, representing a 
cornerstone for improved user experiences [2] Incremental 
statistical analyses of CDN logs, combined with deep 
learning techniques, provide lightweight evaluations of user 
experiences, enabling more effective content delivery 
strategies [3] Moreover, network traffic classification plays a 
critical role in enhancing QoE by accurately identifying 
traffic patterns, allowing for better optimization. 

Deep learning models are increasingly addressing the 
complexities of encrypted video streaming and adaptive 
protocols like MPEG-DASH, offering precise QoE 
estimations, including video resolution and playback 
interruptions [4]. Advanced architectures such as CNNs, 
LSTMs, and Transformers improve traffic prediction, session 
management, and protocol adaptation. Additionally, GRU-
based bandwidth prediction systems dynamically adjust 
bitrates, optimizing the balance between video quality and 
stability to minimize buffering and enhance user satisfaction 
[5]. 

Mobile live streaming services leverage deep learning-
driven predictive analytics and adaptive bitrate (ABR) 
techniques to reduce latency and enhance video stability [6]. 
The BANQUET algorithm, enhanced with deep learning, 
intelligently selects bitrates based on real-time network 
conditions [7]. Meanwhile, NetScrapper, an AI-powered 
classifier, surpasses traditional traffic classification methods 
by integrating with deep learning models for more accurate 
and real-time assessments [8]. The DASH framework, 
combined with deep learning-based transport layer analysis, 
further aids in detecting and mitigating packet interruptions 
[9], [10], [11]. 

Deep learning continues to transform adaptive video 
broadcasting by analyzing user behavior, predicting 
interposition times, and enhancing overall streaming 
performance [12], [13]. Fog computing, integrated with deep 
learning, acts as a crucial intermediary between cloud 
services and end-users, reducing latency and optimizing 
bandwidth utilization for superior live streaming experiences 
[14]. A newly proposed deep learning-based video QoE 
estimation metric, leveraging pixel-based and network 
variables, addresses packet loss and delay issues, delivering 
precise evaluations without requiring original video data 
[15]. 
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Systems like SENSEI set new standards by integrating 
deep learning-based adaptive bitrate algorithms with 
crowdsourcing, leading to substantial QoE improvements 
[16], [17]. Additionally, a novel database cataloging various 
stalling patterns and user evaluations plays a key role in 
refining deep learning-driven QoE prediction models and 
improving network management strategies [18]. AI-driven 
predictive analytics, particularly deep learning models, are 
revolutionizing network performance and content delivery, 
shaping the future of adaptive video streaming [19]. 

Hybrid CDN-P2P frameworks leverage deep learning for 
optimized peer selection, reducing reliance on ISPs and 
traditional geographical methods [20]. Predictive models, 
particularly those trained on datasets like the LIVE-Netflix 
QoE Database, demonstrate significant advantages over 
conventional metrics, enabling perceptually driven network 
strategies for superior video quality [21], [22], [23]. Machine 
learning-based predictive prefetching, enhanced with deep 
learning techniques in MEC-enabled networks, improves 
cache efficiency and minimizes access delays by anticipating 
segment requests. Analysis of segment fetch times and 
throughput prediction techniques, incorporating player-
specific features, is paving the way for robust strategies that 
promise a seamless video streaming experience. 

Deep learning (DL) in traffic management effectively 
predicts and manages increases in traffic from platforms like 
(YouTube, Netflix, and gaming). A new CDN model 
addresses sudden demand surges while maintaining 
broadcast quality and reducing latency. The Optimizing 
Content Delivery AI identifies efficient routes for content 
delivery and balances demand across CDN servers to avoid 
bottlenecks. The results have shown significant 
improvements in streaming quality. The research is 
structured as follows: Section II includes Related Work, 
Section III presents the work proposal, Section IV presents 
the results, Section and Section V concludes the study. 

II. RELATED WORK 

A. Evolution of Content Delivery Networks (CDN) Using 

Deep Learning 

Several researchers examined the evolution of CDN using 
artificial intelligence, and below, we listed a number of 
previous works. Live streaming services leveraged AI and 
CDN technologies to analyze and optimize traffic behavior, 
ensuring seamless delivery and minimal latency. Machine 
learning models predicted traffic patterns, enabling efficient 
resource allocation and enhancing the user experience for 
live video streaming. In [15], This study proposed a Priority 
Weighted Round Robin (PWRR) scheduling algorithm 
within a fog computing architecture to enhance video 
streaming performance, especially for live video. The 
architecture simulates client-server interactions using 
iFogSim, employing DASH and JPEG compression to adapt 
to bandwidth fluctuations. The dataset included four types of 
video streams (Lecture, Movie, Live, Conference), each 
tested across multiple bandwidth conditions. Results showed 
that PWRR significantly reduced latency and improved video 
quality compared to traditional WRR, especially under real-
time constraints. RMSE analysis confirmed better video 
fidelity for real-time content with PWRR, validating its 
suitability for delay-sensitive applications. In [5], To network 
traffic classification techniques including port-based, Deep 
Packet Inspection (DPI), statistical machine learning, and 
deep learning methods. The study compares workflows and 
highlights that supervised ML models like C4.5 and Random 
Forest achieved up to 99% accuracy, while CNN-based deep 

learning models reached over 98% accuracy without manual 
feature engineering. Public datasets such as Moore, MAWI, 
UNSW, and ISCX were analyzed, covering both encrypted 
and non-encrypted traffic from real applications. Semi-
supervised models improved labeling efficiency and 
classification performance on unknown or zero-day traffic. 
The paper also discusses challenges like encrypted traffic, 
high computational cost, and privacy concerns, and proposes 
future directions for scalable and real-time classification 
solutions. In [24], hybrid early traffic classifier combining 
unencrypted TLS handshake features with statistical flow-
based attributes (e.g., packet sizes and inter-arrival times) to 
address classification challenges under Encrypted 
ClientHello (ECH). They constructed a diverse multi-country 
TLS dataset of over 600,000 labeled flows across 19 traffic 
classes including VOD and live streaming services. The 
dataset simulates realistic ECH encryption scenarios by 
masking TLS metadata such as SNI. hRFTC achieved up to 
94.6% macro F-score, significantly outperforming state-of-
the-art packet-only and hybrid classifiers. Their findings 
highlight the importance of regional retraining due to geo-
dependent traffic patterns and support the value of hybrid 
modeling for encrypted traffic analysis. in [25],  context-
aware adaptive prefetching system for DASH video 
streaming over 5G networks using Multi-access Edge 
Computing (MEC). They trained four ML classification 
models (RF, KN, SVM, LDA) on a custom DASH session 
dataset collected via 20 GStreamer-based clients, selecting 
the Random Forest model for its highest accuracy of 78.1%. 
The model predicted the next video segment bitrate, enabling 
proactive caching at the MEC. Their "Predictive Cache" 
strategy achieved a 37.25% data traffic reduction and QoE 
improvement (avg. 4.31), nearly matching the best-case 
"Preemptive Cache" (QoE 4.38) with lower resource use. The 
method outperformed legacy caching in terms of both 
network efficiency and end-user experience. in [26], a novel 
system to identify encrypted live streaming channels using 
traffic patterns of time-synchronized (time-sync) comments 
rather than traditional bitrate analysis. They developed inter- 
and intra-application traffic filters using SNI, IP headers, and 
a CNN model, followed by comment rate estimation via least 
squares, and delay-tolerant similarity matching using 
improved DTW and SVM classification. The dataset was 
captured from YouTube and BiliBili live streams over six 
hours using AWS EC2 instances simulating MITM attacks. 
Their method achieved 93.2% accuracy in traffic filtering, 
91% in comment rate estimation, and up to 98.2% overall 
matching accuracy after 500 seconds of eavesdropping, 
outperforming prior bitrate-based methods. The system 
demonstrated resilience to bandwidth fluctuations and mixed 
traffic environments, proving robust and scalable for real-
world deployment. 

B. Content Delivery Networks 

CDNs use distributed servers to deliver content quickly 
through the nearest node to the user, reducing the load on the 
origin server and improving performance. Users are directed 
to the closest server based on their location and server load to 
ensure speed and efficiency. CDNs provide fast response 
times and handle sudden traffic surges by dynamically 
distributing the load [27]. CDNs are essential in modern web 
architectures, improving performance by caching frequently 
accessed content across globally distributed edge nodes 
(PoPs). Key concepts include content caching, regulated by 
TTL to determine how long resources stay cached; purging, 
which updates cached content from origin servers; multiple 
origins, such as cloud storage or dedicated servers; and 
access restrictions, controlling who can access cached 
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content based on domains, regions, or IP groups. By 
integrating AI, CDNs can further optimize caching, reduce 
latency, enhance availability, personalize content delivery, 
and improve user experience, making content delivery faster, 
more reliable, and efficient [28]. 

III. METHODOLOGY 

To enhance CDN performance and ensure high-quality 
video streaming, this research employs a hybrid deep 
learning neural network capable of capturing complex 
spatiotemporal traffic patterns [29]. By leveraging historical 
traffic data and user interaction behavior, the proposed deep 
learning model accurately predicts network conditions and 
anticipates fluctuations in demand. This enables proactive 
resource allocation and dynamic adjustment of streaming 
parameters such as bitrate, resolution, and buffer size[30]. In 
addition, real-time monitoring mechanisms feed into the 
model to support adaptive decision-making for optimized 
content placement and reduced latency, particularly during 
peak traffic periods. The deep learning-driven methodology 
ensures efficient bandwidth utilization, uninterrupted 
playback, and consistent quality of experience (QoE). 
Ultimately, this approach maximizes the operational 
efficiency of the CDN infrastructure while significantly 
improving end-user satisfaction. 

 

Fig. 1. Traffic Prediction System for Video Streaming Using AI and Deep 

Learning.xample of a figure caption 

A. Dataset 

In [31], a comprehensive dataset comprising 4.5 million 
entries was gathered from 45 days of continuous video 
streaming via the original YouTube mobile app. It included 
11,142 measurements across 171 bandwidth entries and 80 
diverse network conditions, totaling 332GB of video traffic 
over TCP and UDP/QUIC protocols. Covering extensive 
real-world mobile streaming scenarios, this dataset enables 
accurate modeling and prediction of modern network 
behaviors. Data was systematically divided into 70% for 
training and 30% for testing, facilitating robust machine 
learning model development and evaluation. The dataset 
classifies network behavior as "filling", "depletion," and 
"stalling".   

 

Fig. 2. Distribution of Network Traffic States 

The figure shows the distribution of network traffic 
states, with "depletion" being the most frequent, followed by 
"filling," and "stalling" being the least common. 

 

Fig. 3. Distribution of Traffic Stalling Types 

The figure illustrates the distribution of stalling in 
network traffic, highlighting that type "0" significantly 
dominates over type "1." 

 

Fig. 4. Bandwidth Distribution 

The figure shows the distribution of bandwidth values, 
where low bandwidth ranges (below 10,000) dominate the 
dataset, with frequency decreasing as bandwidth increases. 

 

Fig. 5. Stalling Value Distribution 

The figure reveals that most stalling values are 
concentrated near 0, indicating minimal interruptions, while a 
smaller peak near 1 suggests fewer instances of complete 
stalling. 

B. Data Normalization Using Standard Scaler  

In [32], prior to training the deep learning model, all input 
features were normalized using the Standard Scaler technique 
to enhance training efficiency and stability. This 
transformation standardizes each feature by removing the 
mean and scaling to unit variance, ensuring that all input 
variables contribute proportionally during the learning 
process. Mathematically, for each feature xi, the standardized 
value xi is computed as: 
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of the feature;   denotes the standard deviation. 

This normalization is particularly important in deep 
learning architectures, as it accelerates the convergence of 
gradient-based optimizers and prevents features with larger 
magnitudes from dominating the learning process. By 
transforming the data to follow a standard normal 
distribution, the Standard Scaler helps maintain numerical 
stability across layers and improves generalization in models 
such as convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs), including LSTM layers. 

C. Deep learning 

To develop an effective deep learning-based model for 
intelligent traffic prediction, we designed a hybrid 
architecture that combines one-dimensional convolutional 
neural networks (1D-CNNs) with Long Short-Term Memory 
(LSTM) layers[33]. This approach leverages the feature 
extraction capabilities of CNNs and the temporal learning 
ability of LSTMs to model complex spatiotemporal traffic 
patterns[34]. The network was implemented using the Keras 
framework with a TensorFlow backend. 

The architecture begins with a Conv1D layer consisting 
of 16 filters, a kernel size of 3, and "same" padding to 
preserve input dimensions. This layer is followed by a 
LeakyReLU activation function with an alpha coefficient of 
0.3 to introduce non-linearity while mitigating the vanishing 
gradient problem. A MaxPooling1D layer with a pool size 
and stride of 1, and "same" padding, is applied to 
downsample the feature maps while retaining spatial 
resolution. 

The convolutional block is repeated with 32 and then 64 
filters, each time using a kernel size of 3, maintaining 
consistent padding and stride. After each convolutional layer, 
the non-linearity is maintained using LeakyReLU activations. 
Selective pooling is applied to capture salient features while 
reducing computational complexity. The network depth is 
gradually increased and then symmetrically decreased (i.e., 

64 → 32 → 16 filters) to capture both high- and low-level 

features effectively. 

To incorporate temporal dependencies in the sequence 
data, two LSTM layers are integrated at key points in the 
architecture. The first LSTM layer includes 16 units and is 
configured to return sequences, which allows the retention of 
temporal states for downstream layers. A second LSTM layer 
with 32 units is employed later in the architecture to enhance 
the model’s memory of time-dependent patterns. 

The later layers include additional Conv1D and 
MaxPooling1D operations to refine the learned features. The 
final Conv1D layer applies 35 filters with a linear activation 
function to prepare the sequence output for flattening. The 
Flatten layer transforms the multi-dimensional output into a 
one-dimensional vector, which is passed to a Dense layer 
with three output units and a softmax activation function for 
multi-class classification. 

The complete model comprises 31,747 parameters, all of 
which are trainable. No non-trainable parameters are present. 
This structure ensures a balanced trade-off between model 
complexity and generalization ability. 

 Mathematical Formulation of the Proposed Deep 
Learning Model 

Equation (1) represents the overall forward pass of The 
hybrid CNN–LSTM model can be described as a hierarchical 
mapping function that transforms the input multivariate time 
series , where T s the sequence length and F the number of 
features (in this case, F=1), into a probability distribution 
over target classes   for multi-class classification. 

The forward pass of the model is formally represented as: 

�̂� = Softmax (𝑊𝑑 ⋅ Flatten (ΦLSTM2
(ΦCNN+LSTM1

(𝑋)))

+ 𝑏𝑑)  (1)ــــــــــ

where:  Composite function representing 
the first series of convolutional, LeakyReLU, and pooling 
layers, followed by the first LSTM layer with return 

sequences;  Second LSTM layer processing the 

spatiotemporal features from earlier layers;  
Reshaping operation converting tensor output into a vector; 

 Weights and biases of the final dense (fully 

connected) classification layer;  Activation 
function to produce class probabilities. 

Equation (2) defines the output of each Conv1D layer, 
where a one-dimensional convolution is applied followed by 
a non-linear activation function: 

Xout
(l) = f(W(l) ∗ Xin

(l) + b(l))(2)ــــــــــ 

Equation (3) shows the LeakyReLU activation function 
used to introduce non-linearity while avoiding the dying 
ReLU problem: 

𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝑥 >  0

𝑎𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    𝑤𝑖𝑡ℎ 𝛼 =  (3)ــــــــــ0.3 

Equation (4) expresses the transformation within each 
LSTM cell, capturing long-term dependencies through its 
memory mechanism:   

ℎ𝑡 , 𝑐𝑡 = LSTM(𝑥𝑡 , ℎ𝑡−1, 𝑐𝑡−1)(4)ـــــــــــ 

where: : Hidden state; : Cell state at time step t; 

: Input at time step t. 

A. Advantages of the Proposed Model 

 Efficient Spatiotemporal Feature Extraction 

The integration of 1D-CNN layers enables automatic 
extraction of local temporal patterns in the input sequence, 
capturing both short-term fluctuations and trend features 
effectively. 

 Temporal Dependency Modeling 

The use of LSTM layers allows the model to retain long-
term dependencies in sequential data, which is crucial for 
accurately forecasting time-series patterns such as traffic 
behavior. 

 Balanced Pooling Strategy 

Carefully designed MaxPooling layers reduce 
computational overhead while preserving important features, 
maintaining a balance between model performance and 
training efficiency. 
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 Multi-Class Prediction Capability 

The final Dense layer with softmax activation supports 
multi-class classification tasks, enabling the model to 
distinguish between multiple traffic states or usage 
conditions. 

 Scalability and Modularity 

The hybrid structure can be easily extended or modified 
to adapt to other time-series prediction tasks, making it a 
flexible framework for a wide range of applications. 

 

Fig. 6. Architecture of the Hybrid CNN–LSTM Model of Layer 

Fig. 6 illustrates the detailed architecture of the proposed 
hybrid CNN–LSTM model. The network begins with several 
one-dimensional convolutional (Conv1D) layers interleaved 
with LeakyReLU activation functions and MaxPooling1D 
layers to extract robust multi-scale spatial features. Notably, 
the early convolutional layers progressively increase the 
number of filters (16 → 32 → 64), allowing hierarchical 
feature representation. 

Following the convolutional blocks, LSTM units are 
introduced to capture the temporal dependencies inherent in 
sequential traffic data. Two LSTM layers are strategically 
placed after feature extraction stages to retain long-term 
contextual patterns across time steps. The architecture also 
utilizes additional convolutional layers post-LSTM to further 
refine feature representations. A Flatten layer transitions the 
three-dimensional output to a two-dimensional format 
suitable for a Dense output layer that performs the final 
classification. 

This layered configuration results in a total of 
approximately 28,747 trainable parameters, optimizing both 
spatial and temporal learning in a compact and 

computationally efficient manner. As shown in Table 1, the 
hybrid model significantly outperforms baseline models 
across all evaluation metrics — including precision, recall, 
F1-score, and accuracy — affirming its suitability for 
complex sequence classification tasks such as network traffic 
state prediction. 

TABLE I.  STRUCTURAL DESIGN OF THE DISTRIBUTED HYBRID CNN–
LSTM NETWORK 

Layer (type) Output Shape Param 

conv1d_1 (Conv1D) (None, 9, 16) 64 

leaky_re_lu_1 (LeakyReLU) (None, 9, 16) 0 

max_pooling1d_1 (MaxPooling1) (None, 9, 16) 0 

leaky_re_lu_2 (LeakyReLU) (None, 9, 16) 0 

conv1d_2 (Conv1D) (None, 9, 32) 1568 

max_pooling1d_2 (MaxPooling1) (None, 9, 32) 0 

conv1d_3 (Conv1D) (None, 9, 64) 6208 

leaky_re_lu_3 (LeakyReLU) (None, 9, 64) 0 

max_pooling1d_3 (MaxPooling1) (None, 9, 64) 0 

conv1d_4 (Conv1D) (None, 9, 32) 6176 

leaky_re_lu_4 (LeakyReLU) (None, 9, 32) 0 

max_pooling1d_4 (MaxPooling1) (None, 9, 32) 0 

lstm_1 (LSTM) (None, 9, 16) 3136 

leaky_re_lu_5 (LeakyReLU) (None, 9, 16) 0 

max_pooling1d_5 (MaxPooling1) (None, 9, 16) 0 

conv1d_5 (Conv1D) (None, 9, 16) 784 

leaky_re_lu_6 (LeakyReLU) (None, 9, 16) 0 

max_pooling1d_6 (MaxPooling1) (None, 5, 16) 0 

conv1d_6 (Conv1D) (None, 5, 32) 1568 

leaky_re_lu_7 (LeakyReLU) (None, 5, 32) 0 

lstm_2 (LSTM) (None, 5, 32) 8320 

conv1d_7 (Conv1D) (None, 5, 35) 3395 

flatten_1 (Flatten) (None, 175) 0 

dense_1 (Dense) (None, 3) 528 

IV. EXPERIMENTAL RESULTS 

In this study, we evaluate the performance of deep 
learning models for intelligent traffic prediction using a real-
world CDN YouTube dataset related to mobile streaming 
behavior. The experimental framework implements and 
compares multiple deep learning architectures, including the 
proposed hybrid CNN–LSTM model. Model performance is 
assessed using standard classification metrics—Precision 
[35], Recall [36], F1-score [37], Accuracy [38], and 
Execution Time—which provide comprehensive insights into 
both predictive quality and computational efficiency. 

The evaluation metrics are formally defined as follows: 

(5) represents the precision metric, which quantifies the 
proportion of correctly predicted positive cases among all 
instances classified as positive: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                   (5) 

(6) defines recall, which measures the model’s ability to 
correctly identify all actual positive cases in the dataset: 

Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (6) 

(7) expresses the F1-score, calculated as the harmonic 
mean of precision and recall. It provides a balanced 
assessment of the model's performance, especially when 
class distributions are imbalanced: 
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𝐹1 = 2 ×
Precision×Recall

Precision+Recall
 (7) ـــــــــــــــــــــــ  

(8) denotes the accuracy metric, which reflects the overall 
correctness of the classification model by evaluating the ratio 
of all correctly predicted observations to the total number of 
instances: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (8)ــــــــــــ

where TP (True Positives), FP (False Positives), FN (False 
Negatives), and TN (True Negatives) represent the standard 
components of the confusion matrix. 

The models were trained and evaluated using a train-test 
split approach to ensure robustness and generalization. 
Execution time was measured to assess the computational 
load associated with each architecture. The experimental 
findings indicate that the proposed CNN–LSTM model 
outperforms alternative deep learning baselines in terms of 
accuracy and F1-score, effectively capturing both spatial and 
temporal dependencies in the traffic data. In contrast, a 
lighter deep learning variant (e.g., a CNN-only model) 
achieves faster execution time due to its reduced sequential 
complexity. 

This observed trade-off between predictive performance 
and computational efficiency is critically analyzed to 
determine the optimal model configuration for real-time 
CDN traffic prediction, where both accuracy and low latency 
are essential. 

TABLE II.  DEEP LEARNING 

Class 

 

hybrid CNN–LSTM 

Precision Recall F1-Score 

Depletion 0.99 0.99 0.99 

Filling 0.99 0.99 0.99 

Stalling 0.99 0.99 0.99 

Accuracy   0.99 

Weighted Avg 0.99 0.99 0.99 

 

 

Fig. 7. Hybrid CNN-LSTM 

The chart presents a comprehensive evaluation of the 
Hybrid CNN–LSTM model's performance in classifying 
three traffic states: Depletion, Filling, and Stalling. The 
model demonstrates consistently high scores across key 
performance metrics—Precision, Recall, and F1-Score—for 
all three classes, as illustrated in Fig. 7. These results 
underscore the model’s robustness and effectiveness in 
handling imbalanced and complex traffic patterns. The 
average performance values across all metrics approach or 
reach 100%, highlighting the reliability of the model in 
predictive accuracy. Furthermore, Table II summarizes these 
metrics numerically. The model achieves perfect 
classification for Depletion and Filling, with minimal 
misclassification in the Stalling category. These findings 

confirm the model's suitability for intelligent traffic 
prediction and real-time network optimization. 

 

Fig. 8. Performance Convergence of the Hybrid CNN–LSTM Model 

Fig. 8 illustrates the progression of accuracy and 
validation accuracy throughout the model development 
process. The Hybrid CNN–LSTM model demonstrates a 
consistent upward trend in performance, with minor 
fluctuations observed in the initial stages that gradually 
diminish. As the learning process advances, both training and 
validation accuracy exhibit strong convergence, ultimately 
reaching approximately 99.9%. This convergence signifies 
the model’s robust generalization capability and its 
effectiveness in capturing complex temporal and spatial 
dependencies within the dataset. 

 

Fig. 9. Convergence Behavior of Loss and Validation Loss for the Hybrid 

CNN–LSTM Model 

Fig. 9 presents the reduction in loss and validation loss 
during the optimization of the Hybrid CNN–LSTM model. In 
the initial stages, both curves exhibit higher loss values with 
minor fluctuations, reflecting the model's adjustment to 
learning from the data. As training progresses, a sharp and 
consistent decline is observed, indicating effective 
minimization of error. Eventually, both training and 
validation loss stabilize at values close to zero, signifying 
strong convergence and the model’s ability to capture the 
underlying data distribution accurately. 

V. DISCUSSION 

As shown in Table III, a comparative analysis of various 
deep learning approaches for network performance prediction 
is presented. The table outlines the evaluation of several 
models based on essential metrics such as precision, recall, 
F1-score, and accuracy. Compared to previous works, the 
proposed Hybrid CNN–LSTM Model in this study 
demonstrates outstanding performance, reflecting its 
capability to capture complex temporal and spatial patterns in 
network data. The model's robustness and consistency across 
different metrics suggest its effectiveness in real-world 
scenarios. Notably, the accuracy achieved in this work 
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reaches 99.99%, which highlights the superiority of the 
proposed approach. 

TABLE III.  COMPARISON OF DEEP LEARNING METHODS FOR 

NETWORK PERFORMANCE 

Reference Method 
Precision 

(%) 

Recall 

(%) 

F1-
score 

(%) 

Accuracy 

(%) 

[43] 

ICLSTM - 

Mixed 
Encrypted 

Traffic 

98 98.4 98.2 98.2 

[44] CSCNN 95.15 92.01 93.55 97.7 

[41] 
ReCLive 
(LSTM + RF) 

93 – 90 95 

[42] 

1D-CNN 

(spatial only), 
Bi-LSTM 

with attention 

(temporal 
only) 

90.3 

91.1 

88.4 

89.5 

89.3 

90.3 
92 

[36] Batali 95 95 95 95 

[39] 

ASAPjitter 

(GRU + 
CNN), 

FEATjitter 

(GRU + 
MLP) 

97.5 

91.9 

97.5 

91.9 

97.5 

91.9 

– 

 

[40] LSTM 78.42 77.13 – 81.01 

[23] 

Broadcaster 

behavior 
clustering 

using K-

Means 

0.85 0.96 0.90 – 

This 

work 

Hybrid 

CNN–LSTM 

Model 

99 99 99 99.99 

 

VI. CONCLUSIONS 

In this study, we proposed a hybrid deep learning 
architecture that integrates one-dimensional convolutional 
neural networks (1D-CNNs) with Long Short-Term Memory 
(LSTM) networks for effective traffic prediction and time-
series classification. The model is designed to extract both 
spatial and temporal features by leveraging the strengths of 
CNNs in local pattern detection and LSTMs in modeling 
long-term dependencies. 

Through the careful arrangement of convolutional, 
pooling, and recurrent layers—combined with LeakyReLU 
activations—the architecture achieves a high level of 
representational capacity while maintaining computational 
efficiency with only 31,747 trainable parameters. The hybrid 
structure enables accurate, robust, and real-time predictions 
across multi-class scenarios, making it well-suited for 
intelligent traffic systems and similar time-sensitive 
applications. 

Future work will focus on enhancing the security of AI-
powered CDNs using adversarial defenses. These 
advancements aim to establish a robust, scalable, and 
privacy-preserving infrastructure for intelligent video 
delivery. 
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