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Abstract— Due to the rise in advanced and more frequent 

cyberattacks, traditional IDS systems are unable to identify 

new threats and can create a lot of false alarms. In this paper, a 

new IDS called DeepCyber-IDS is discussed, which addresses 

these issues by using deep learning to spot complex network 

traffic patterns and require less fine-tuning or creation of new 

features. The system combines CNN, GRU, and LSTM layers 

to draw useful information from the raw traffic data in terms 

of space and time. Unlike legacy IDS systems, DeepCyber-IDS 

learns on its own from unrefined input, meaning it can fit into 

various network situations without needing to be guided by 

outside features. It was tested on three commonly used datasets 

to see how well it performed. NSL-KDD, UNSW-NB15, and 

SmartGrid. The model got a perfect F1-Score and a 100% 

precision and recall rate on UNSW-NB15 and SmartGrid, and 

an accuracy score of 99.84% on NSL-KDD. The processing 

times varied from 469 milliseconds to about 53 seconds, 

meaning it can be used in real-time monitoring situations.They 

reveal that DeepCyber-IDS can protect against a wide array of 

threats and is also capable of being easily improved over time. 
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I. INTRODUCTION  

With more digital technology appearing everywhere, 
there are more opportunities for cyberattacks. Since modern 
networks are made up of different components and grow all 
the time, they become more susceptible to sophisticated 
attacks that go unnoticed [1]. Traditional IDS solutions both 
with signature-based detection and based on watching for 
anomalies have not been able to respond well to advanced 
persistent threats, polymorphic malware, and vulnerabilities 
that first appear on the same day. Because they often have 
high false positives, they can make security teams’ work 
much harder and slow down operations. The Internet of 
Things (IoT) involves a wide variety of interconnected 
gadgets that can send data and services between themselves, 
without humans getting involved [2], . Even though 
automation and efficiency got better over time, there has also 
been an increase in Distributed Denial of Service (DDoS) 
attacks. Along with saturating computer resources and 
internet bandwidth, some DDoS attacks these days also use 
extortion, adding to their complexity in being handled [3]. 

When a lot of data moves across a network rapidly, real-
time detection of intrusions gets more problematic. Always 
remember to find the right balance between detecting threats 
and working efficiently and quickly. Isolating unusual 
activity on networks is difficult because there is so much data 
and it is so variable and noisy. The addition of wormhole, 
sinkhole, flooding, and jamming complicates things by 

bringing new ways to disrupt communication while also 
making it look as if real users are communicating normally 
[5], [4]. Having extra or unnecessary information in traffic 
data delays the classifier in telling normal activity apart from 
malicious activity, demands more time and effort, and leads 
to a high rate of false indications [5]. To get around these 
issues, there has been a trend to handle intrusion detection as 
a classification challenge, with ML and DL techniques used 
more widely as a result [6]. K-Nearest Neighbors (KNN), 
Decision Trees (DT), Support Vector Machines (SVM), and 
Random Forests (RF) are often used as they are both 
understandable and require only moderate amount of 
resources. In addition, recent research has revealed that DL 
networks called autoencoders, deep belief networks, and 
convolutional neural networks (CNNs) work better at finding 
complex patterns and modeling large data sets [7],[8]. 

The method suggested here advances the field of 
intelligent and scalable IDS, ready to be used in today’s IoT 
and cyber-physical systems.To fix these issues, the research 
presents DeepCyber-IDS, a new IDS framework based on 
deep learning. It is important to create a design that can spot 
changes well and scale and perform well on various types of 
networks. DeepCyber-IDS focuses on being both accurate 
and suited to various environments, catching both already 
known and new types of attacks with very little user or 
developer involvement. 

A combination of a CNN-GRU-LSTM model and a 
special network scheme is used to strengthen identifying 
DDoS and different network intrusions. The use of 
optimization enhances the model’s accuracy in detection, its 
ability to reduce features, and the speed at which the model 
executes. By comparing the model’s results with those from 
DeepCyber-IDS, it is clear that the enhanced model is faster 
and more applicable in real-time. 

II.  LITERATURE REVIEW 

With the use of deep learning and feature selection, IDS 
for IoT and cyber-physical systems have made significant 
improvements. Because of Mohy-eddine et al. [9], designed 
IDSs for IoT networks now use an integrated feature 
selection method and KNN algorithm . They looked at 
different ways to do feature selection, including using things 
like Genetic Algorithms, simple statistics, and Principal 
Component Analysis. They found that choosing the top ten 
important features greatly improves the detection process. An 
other hybrid IDS model was introduced by a team of 
researchers, using a mix of both deep and shallow learning 
algorithms [10]. They used the SMOFS method to select 
related parameters among a large number of them. A 
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Siamese Neural Network was applied to improve how well 
the features distinguish between data points, and it also 
handled changes in the shape of the intrusion data more 
effectively. 

According to Syed et al. [11], the next-generation 
architecture they outlined for an IDS in fog-cloud IoT works 
by filtering data based on profiles of attackers in a distributed 
manner. Still, it did not have a unified tool for choosing 
features, so it could not reach high optimization levels with 
large applications. A comprehensive review by Chen et al. 
[12] looked at different ways to protect the Internet of 
Medical Things (IoMT) and also checked out several types of 
artificial intelligence systems used for this purpose. 
According to the study, there is a greater need for advanced 
AI to handle cybersecurity and ethics problems, especially in 
cloud-fog-edge systems. 

Binbusayyis et al. [13] also came up with a way to protect 
healthcare IoMT systems from data pollution by using a 
method that works together with the main system but keeps 
sensitive data away from poisoning. The combination of TFL 
and clustering in their model made it robust to various 
manipulation attacks without losing the integrity of their 
model. In looking at traditional ML models for IoMT 
security, one study [14] tested KNN, Naïve Bayes, SVM, 
ANN, and Decision Trees using the Bot-IoT dataset to see 
how well they work. It was found that using classical 
classifiers, and more specifically XGBoost, provided 100% 
accuracy when detecting malicious traffic. 

Jithish et al. [15] published a novel IDS designed for 
Cyber-Physical Manufacturing Systems (CPMS), which is 
based on Kernel PCA (KPCA) and Self-Organizing Maps 
(SOMs). Their testing using the CSTR simulation model 
showed they caught almost every problem, doing better than 
most older ways of checking for security issues. Maseno and 
Wang designed an improved IDS that combines ELM with 
SVM [16]. They selected the features by using a genetic 
algorithm and then continued with sequential forward 
selection, running their model on the IoT-ToN and UNSW-
NB15 datasets. As a result, the model performed better, with 
99% and 86% accuracy, supporting the usefulness of using 
hybrid feature selection in IDS. IDS performance was 
improved by Fadhil et al. [17] through the implementation of 
the Lion Optimization Algorithm (LOA) and Grey Wolf 
Optimizer (GWO) on IDS systems. As part of their study, 
they developed a new IDS that combines LOFS and GWM to 
lessen the number of features in a CNN-LSTM deep learning 
framework. Using benchmark datasets such as NSL-KDD, 
their system managed to achieve an accuracy of over 
99.26%, which led to more exact detection of anomalies and 
fewer false positives. 

III. PREPARE METHODOLOGY 

DeepCyber-IDS is built using a mix of CNN, GRU, and 
LSTM so that it can efficiently understand and classify 
network traffic as illustrated in Figure 1. It has multiple 
layers that help capture how different parts of the network 
traffic change over both space and time. CNN layers help 
find features in small sections of data, GRUs make sure the 
model understands the short patterns that happen near each 
other, and LSTM units help the model pick up on longer 
patterns across the sequence. This way, DeepCyber-IDS is 
capable of finding many different attack patterns, including 
simple and quick anomalies as well as elaborate intrusions. 

 
Fig. 1. Workflow of DeepCyber-IDS Model Architecture 

A.  Dataset Description 

The model was trained and tested with three sets of data 
that most experts think are reliable: NSL-KDD [18], UNSW-
NB15 [19], and SmartGrid [20]. An advantage of the NSL-
KDD over the KDD’99 dataset is that less number of 
samples are needed due to its balanced and refined state. The 
UNSW-NB15 dataset contains behaviors that modern 
networks might see and more types of attack patterns, 
helping make it useful for testing how well machines and 
networks handle today's security challenges. On the other 
hand, SmartGrid conducts experiments by simulating attacks 
on industrial control systems and smart grids based on the 
Industrial Internet of Things (IIoT). All datasets were cleaned 
up by getting rid of noisy data, making sure all the numbers 
in the data were in a similar range, and turning categorical 
data into numbers that the model could understand. 

B.  Model Architecture 

The main structure of DeepCyber-IDS is built to 
understand patterns and trends in data received one after 
another from the network as shown in Table (1). The model 
starts with a 1D Convolutional Neural Network (Conv1D) 
layer where it uses 8 filters of size 3 and moves along the 
input sequence one step at a time. This part of the process 
allows for the detection of sequence patterns within ports and 
protocol headers. LeakyReLU is used to activate the output 
with alpha at 0.3, so that very negative numbers do not cause 
the neurons to become inactive. The next layer, 
MaxPooling1D, uses a pool size of 2 and same padding, 
which helps downsize the feature map without reducing 
important patterns. 

Then, more convolutional layers are added, with each one 
taking the depth to 16 and then 32 filters, and accompanied 
by LeakyReLU and pooling. It allows the model to take raw 
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information and extract more significant features about how 
attacks occur. The extracted features are then sent into a 
Gated Recurrent Unit (GRU) layer consisting of 16 units. 
GRUs help in catching short-term patterns as well as 
activities that happen all at once or occur in a way out of the 
norm for the sequence as a whole. A second MaxPooling1D 
operation is also used to squeeze the time-based information 
even more.  

This is followed by a LSTM layer with 16 units, which 
does a good job at picking up patterns that happen far apart, 
like attack attempts that come long after something started, or 
cases where someone stays online for a long time, which 
ducks might be a sign of someone trying to break in. The 
LSTM is important because it can pick up patterns and 
connections in the sequence of words or numbers that regular 
models might miss. After finishing the convolutional layers, 
there is another layer with 16 filters, which is followed by 
squashing the sequence into 2 output variables through a 
Dense layer and using softmax to perform the final normal 
vs. attack classification. Thanks to the combination of CNN-
GRU-LSTM, DeepCyber-IDS is capable of picking up 
complex features across time and space, making it useful for 
identifying ongoing and recent cyber threats without delay. 

TABLE I.  DEEPCYBER-IDS MODEL ARCHITECTURE 

  

C. Training and Evaluation 

The way DeepCyber-IDS was trained aimed to achieve 
good detection results and work effectively on different data 
sets. The optimizer used in the model, Adam, allows for an 
adaptive learning rate, making it efficient in training 
networks with constantly altering gradients. The loss function 
used was categorical cross-entropy, which works well for 
problems with many classes, and also works just as well 
when classifying binary data if you use one-hot coding for 
the labels. 

Training applied mini-batch gradient descent, with both 
the batch sizes and learning rates picked using a grid search. 
The study tested batch sizes of 16, 32, and 64, and learning 
rates between 104 -10 −4 and 102 -10 −2. While the 

maximum number of epochs allowed was 100, the model 
stopped training early if the validation loss did not improve 
for ten consecutive epochs, so there was less risk of 
overfitting. Model validation was done using a separate part 
(usually 20%) of the training data to make sure that the 
performance results weren't affected by the way the model 
was built. Testing was carried out on the reserved part of the 
data, and five important metrics were checked. It checks the 
accuracy, precision, recall, F1-score, and also the inference 
time. Each dataset (NSL-KDD, UNSW-NB15, SmartGrid) 
was trained and checked on its own so that we could really 
compare how well the models work with different types of 
traffic and attacks. Because of this form of training, 
DeepCyber-IDS works well and can be relied on in real-
world situations for detecting threats. 

IV. RESULTS 

To evaluate the performance of DeepCyber-IDS, 
experiments were done with three different sets of data, 
called benchmark datasets. NSL-KDD, UNSW-NB15, and 
SmartGrid as shown in Table 2. The model was 
independently assessed for each dataset by monitoring its 
outcome on five different metrics of performance. Precision, 
Recall, F1-score, Accuracy, and how fast the process takes. 

TABLE II.  MODEL PERFORMANCE METRICS 

Dataset Precision Recall F1-

Measure 

Accuracy Time 

(Sec) 

unsw_nb 1 1 1 1 53 

nslkdd 1 1 1 0.9984 27 

SmartGrid 1 1 1 1 469ms 

 
On the UNSW-NB15 dataset, DeepCyber-IDS got 100% 

scores on all the evaluation metrics I mentioned. 1.00, Recall: 
1.00, F1-score: 1.00, and Accuracy: 100% took around 53 
seconds to finish. It proves that the model is good at handling 
the differences between different kinds of traffic, both legal 
and malicious, in modern networks. Results from using the 
NSL-KDD dataset were also outstanding, making Precision, 
Recall, and the F1-score 1.00 and the Accuracy 99.84%. It 
only took 27 seconds for the model to complete inference, 
which shows its ability to work with organized and large 
network data. 

For the SmartGrid dataset, which deals with industrial 
IoT and smart grid situations, DeepCyber-IDS got exactly the 
right results when classifying attacks and it finished the test 
in about 0.469 seconds. The performance suggests that the 
model can adapt to different and quick-changing data 
datasets. All in all, these findings reflect that the DeepCyber-
IDS architecture is reliable, runs well, and can be used in 
different network environments without needing prior feature 
or metaheuristic configuration. 

V.  DISCUSSION 

The results obtained from checking DeepCyber-IDS on 
three different benchmark datasets show that the system 
works well on a variety of data sets, is accurate in detecting 
attacks, and can learn how to recognize new threats. The 
model did a really good job at correctly classifying email, 
always getting Precision, Recall, and F1-scores at 1.00, and 
Accuracy of 99.84% to 100% on the three email datasets it 
tested on. These metrics show that the system works well at 
telling normal traffic apart from bad traffic, which is really 
important for putting an IDS into use in real situations. 
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Compared to what others have said before, these results 

show that the analysis was done well and gave useful 

information. By way of example, models with classical 

machine learning algorithms (meaning Decision Trees, 

KNN, SVM) often demonstrate that higher accuracy comes 

at the cost of more false positives. Furthermore, methods 

that use different ways to select features usually need a lot of 

adjustments to work well, and they don't always do well 

when used with different datasets. In contrast, DeepCyber-

IDS got its good results without needing feature selection or 

any optimization techniques, showing how well its in-built 

feature extraction works using CNN-GRU-LSTM layers. 

One especially interesting result was how well the system 

did on the SmartGrid dataset, which has tough and 

complicated data from both electrical grids and industry. 

Achieving high accuracy in a short amount of time (469 ms) 

means the model can help detect intrusions in real-time on 

the internet of things and industry internet of things devices. 

This is important because these systems have to work 

quickly and correctly, or else bad things can start happening 

one after the other, or the system might just stop working. 

However, there are a few weaknesses to it. The training data 

was made up of clean, standard datasets, meaning it has not 

yet been tested in realistic messy or intentional noisy 

environments. Additionally, even though the model works 

well, it still needs a lot of computing power when training, 

which can make it difficult to use on small devices that don’t 

have much resources. The absence of a feature optimization 

step on purpose in this phase can also result in some input 

features that are unnecessary or don’t add much value, so it 

might be a good idea to get rid of them to make the model 

work better. 

VI. CONCLUSION 

In this paper, the hybrid DeepCyber-IDS system was 
developed to help in detecting and classifying a variety of 
attacks on different kinds of networks. The use of CNN, 
GRU, and LSTM in the system allowed it to detect threats in 
network traffic using information about spatial layout and 
timing. Tests conducted on NSL-KDD, UNSW-NB15, and 
SmartGrid show that DeepCyber-IDS has small executive 
times, and close-to-100% accuracy. This reveals the strong 
and useful features of the architecture, both in different types 
of cybersecurity situations and in businesses. 

This means DeepCyber-IDS was designed without 
relying on extra optimization tools, indicating it can directly 
process the input data and pick out significant patterns. 
Though the results are encouraging, future research will 
include the Lion Optimization Algorithm and other 
metaheuristic algorithms to improve both the efficiency and 
simplicity of the model. All in all, DeepCyber-IDS shows 
great promise for tackling current and future intrusion 
detection needs in both regular and industrial IoT systems. 
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